Functional hemichannels formed by human connexin 26 expressed in bacteria
نویسندگان
چکیده
Gap-junction channels (GJCs) communicate the cytoplasm of adjacent cells and are formed by head-to-head association of two hemichannels (HCs), one from each of the neighbouring cells. GJCs mediate electrical and chemical communication between cells, whereas undocked HCs participate in paracrine signalling because of their permeability to molecules such as ATP. Sustained opening of HCs under pathological conditions results in water and solute fluxes that cannot be compensated by membrane transport and therefore lead to cell damage. Mutations of Cx26 (connexin 26) are the most frequent cause of genetic deafness and it is therefore important to understand the structure-function relationship of wild-type and deafness-associated mutants. Currently available connexin HC expression systems severely limit the pace of structural studies and there is no simple high-throughput HC functional assay. The Escherichia coli-based expression system presented in the present study yields milligram amounts of purified Cx26 HCs suitable for functional and structural studies. We also show evidence of functional activity of recombinant Cx26 HCs in intact bacteria using a new growth complementation assay. The E. coli-based expression system has high potential for structural studies and high-throughput functional screening of HCs.
منابع مشابه
Inhibition by Commercial Aminoglycosides of Human Connexin Hemichannels Expressed in Bacteria.
In addition to gap junctional channels that mediate cell-to-cell communication, connexins form hemichannels that are present at the plasma membrane. Since hemichannels are permeable to small hydrophilic compounds, including metabolites and signaling molecules, their abnormal opening can cause or contribute to cell damage in disorders such as cardiac infarct, stroke, deafness, skin diseases, and...
متن کاملMutations of connexin 26 at position 75 and dominant deafness: essential role of arginine for the generation of functional gap-junctional channels.
Gap-junctional channels are large intercellular aqueous pores formed by head-to-head association of two gap-junctional hemichannels (connexin hexamers), one from each of the adjacent cells. The mechano-transduction of sound waves into electrical impulses occurs in the cochlea, which houses the organ of Corti. Hereditary deafness is frequent and mutations of connexin 26, the predominant connexin...
متن کاملFunctional expression in Xenopus oocytes of gap-junctional hemichannels formed by a cysteine-less connexin 43.
Gap-junctional channels are formed by two connexons or gap-junctional hemichannels in series, with each connexon conformed by six connexin molecules. As with other membrane proteins, structural information on connexons can potentially be obtained with techniques that take advantage of the highly specific thiol chemistry by positioning Cys residues at locations of interest, ideally in an otherwi...
متن کاملVoltage opens unopposed gap junction hemichannels formed by a connexin 32 mutant associated with X-linked Charcot-Marie-Tooth disease.
The X-linked form of Charcot-Marie-Tooth disease (CMTX) is an inherited peripheral neuropathy that arises in patients with mutations in the gene encoding the gap junction protein connexin 32 (Cx32), which is expressed by Schwann cells. We recently showed that Cx32 containing the CMTX-associated mutation, Ser-85-Cys (S85C), forms functional cell-cell channels in paired Xenopus oocytes. Here, we ...
متن کاملMechanism of the defect in gap-junctional communication by expression of a connexin 26 mutant associated with dominant deafness.
Gap-junctional channels (connexin oligomers) are large-diameter aqueous pores formed by head-to-head association of two gap-junctional hemichannels, one from each of the adjacent cells. Profound hearing loss of genetic origin is common, and mutations of connexin 26 (Cx26) are the most frequent cause of this disorder. The Cx26 R75W mutant has been associated with disruption of cell-to-cell commu...
متن کامل